RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. THIRD SEMESTER EXAMINATION, DECEMBER 2012

SECOND YEAR

CHEMISTRY (Honours)

Date : 14/12/2012 Time : 11 am - 1 pm

Paper : III

Full Marks : 50

[3]

[1]

[3]

[3]

[3]

(Use separate answer-book for each group)

Group – A

(Attempt one from each Unit)

<u>UNIT-I</u>

1. a) The standard enthalpies of formation of KClO₃ and KClO₄ are -93.50 and -103.60 Kcal mol⁻¹, respectively. And the standard free energies of formation are -69.20 and -72.70 Kcal mol⁻¹, respectively for 25°C. Assuming that $\Delta C_p = 0$ for the reaction,

$$\text{KClO}_4 = \text{KClO}_3 + \frac{1}{2}\text{O}_2$$

Calculate

- (i) K_P for the reaction at 25°C
- (ii) ΔG° for the reaction at 573K

(iii) The temperature coefficient of K_P around 25°C, i.e. $\frac{dK_P}{dT}$. [2+2+2]

b) (i) From the definition of chemical potential arrive at the equation for fugacity of a real gas

following $P(v-b) = RT - \frac{aP}{RT^2}$.

- (ii) What will be the fugacity in comparison to pressure for the above gas at above Boyle temperature?
- c) Estimate the pH of an aqueous buffer solution that contains $0.20 \text{ molL}^{-1} \text{ KH}_2\text{PO}_4$ and $0.1 \text{ molL}^{-1} \text{ K}_2\text{HPO}_4$.

The pK_a values of H_3PO_4 are 2.16, 7.21 and 12.32 at that temperature.

- d) Draw a schematic diagram of Gibbs energy (G) as a function of advancement (ξ) for an endothermic chemical reaction. Mention the equilibrium position also. [2]
- 2. a) Show that the fugacity coefficient (ϕ) of a gas is related to its molar Gibbs energy (G_m) as In $\phi = (G_m - G_m^{id}) / RT$

Where G_m^{id} is the molar Gibbs energy of the corresponding ideal gas at the same T and P.

- b) Write down the Gibbs-Duhem equation. Hence justify that in a binary mixture, if one partial molar quantity is increased then the other must be decreased. [2]
- c) NOCl dissociates according to the equation

$$2NOCl(g) \rightleftharpoons 2NO(g) + Cl_2(g)$$

A certain amount of NOCl is introduced into a flask at 200°C. At equilibrium the total pressure is 1 atm and the partial pressure of NOCl is 0.64 atm. Calculate K_p . [3]

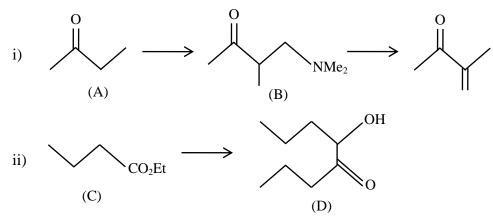
d) (i) Give a qualitative plot of γ_{\pm} vs. $C^{\frac{1}{2}}$ for 1:1, 1:2 and 2:2 salt, and explain the behaviour. [2]

(ii) What is primary kinetic salt effect? Explain with reference to acid catalytic reaction. [2]e) Prove that for an ideal gas reaction

 $\left(\frac{\partial \ln K_x}{\partial P}\right)_T = -\frac{\Delta n}{P}$

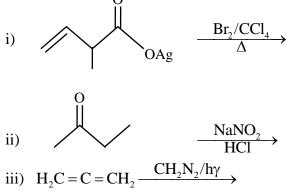
Where Δn is the change in number of moles for the reaction and other terms have their usual significance.

<u>UNIT-II</u>

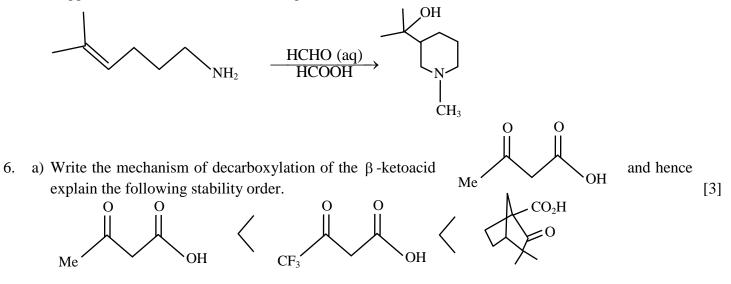

 3. a) (i) Mentioning the basic assumptions for Newton's viscous flow, find out the expression of viscosity of liquid, when it is flowing through a cylindrical tube of 'l' length and 'd' diameter. Of course the driving force is the pressure difference at two ends. (ii) Gas viscosity increases with temperature but for liquid, viscosity decreases with <i>T</i>. True or false? Explain. 	[3]
 b) Stannic oxide can have both (+) vely and (-) vely charged colloid particles. Explain. c) Consider two liquids <i>A</i> and <i>B</i> such that <i>A</i> has half the surface tension and twice the density of <i>B</i>. If liquid <i>A</i> rises to a height of 2.0 cm in a capillary, what will be the height of which liquid <i>B</i> will rise in the same capillary? 	[2]
 4. a) What is 'zeta-potential'? Explain the stability of lyophobic colloids in the context of zeta-potential. b) A brass sphere of diameter 5.5 mm and density 8.55 g cm⁻³ falls through a distance of 22.8 cm in a liquid having density 1.17 g cm⁻³ in 12.3 seconds. Calculate the coefficient of viscosity of the liquid. c) For hydrogen gas at a certain temperature and pressure, it turns out that the mean free path is 5x10⁻⁹ m and the bimolecular frequency, Z_{AA} is 1.6x10¹⁴ moles collision m⁻³s⁻¹. Calculate from above data the viscosity of gas. 	[4] [3]

Group-B

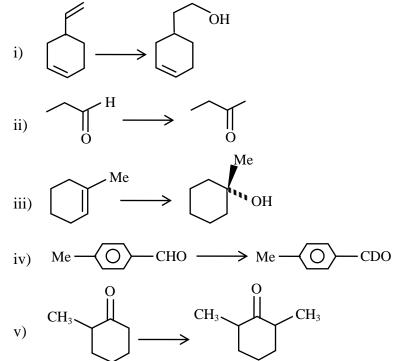
Unit – I


(Answer <u>any one</u> question)

5. a) Give the reagents and the reaction conditions for the following transformations. Also provide mechanisms for the conversion of (A) to (B) or (C) to (D). [4]


b) Prdict the products(s) of the following reactions and give plausible mechanisms in each case : (<u>any</u> <u>two</u>)

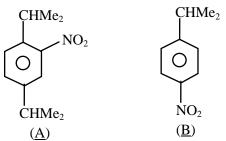
[6]


c) p-N, N-dimethylaminobenzaldehyde fails to undergo benzoin condensation with KCN/EtOH, but the condensation takes place when mixed with benzaldehyde. Explain. [3]

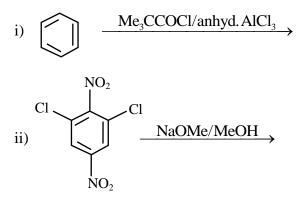
d) Suggest a mechanism for the following transformation :

[2]

- b) Write only the structures of the final products in the following cases :
 - CH₃CHO (1 eq) + HCHO (4 eq) $\xrightarrow{\text{HO}^{-}}$ i)
 - Piperidine ii) PhCOMe $(1 \text{ eq}) + \text{EtO}_2\text{C}$ CO₂Et (2 eq) -[2] $[3 \times 2^{1/2}]$
- c) Carryout the following conversions with mechanism (any three)


d) Predict the product with plausible mechanism when a solution of methyl mesitoate in conc. H_2SO_4 is poured into large volume of ice-cold water. $[2\frac{1}{2}]$

Unit – II


(Answer <u>any one</u> question)

- 7. a) Give the mechanism of nitration reaction of chlorobenzene with mixed acid. Explain the directive influence of chlorine in this reaction. Draw the energy profile diagram of the reaction. [4]
 - b) Account for the formation of <u>m</u>-MeOC₆H₄NH₂ from either <u>o</u> or <u>m</u>-MeoC₆H₄Br by treatment with NaNH₂ in liq NH₃. [3]

c) Nitration for p-diisopropylbenzene gives two products (<u>A</u>) and (<u>B</u>), the latter being formed in major amount — explain the observation. [3]

- 8. a) Explain the following observations :
 - i) The products obtained from the treatment of sodium phenoxide and potassium phenoxide separately with carbondi-oxide under pressure differ widely.
 - ii) Reaction of <u>p</u>-benzoquinone with aniline gives 2,5-diamilino <u>p</u>-benzoquinone while that with KCN/Conc. H_2SO_4 gives 2,3-dicyanoquinol.
 - b) Write down the course of each of the following reactions giving appropriate mechanism : [4]

c) Nitration of cinnamic acid affords 4-nitrocinnamic acid. Explain.

ち 後 え の 参 の 後 の む

[4]

[2]